Lifting problem for universal quadratic forms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438405" target="_blank" >RIV/00216208:11320/21:10438405 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=On3SHHrZRP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=On3SHHrZRP</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2020.107497" target="_blank" >10.1016/j.aim.2020.107497</a>
Alternative languages
Result language
angličtina
Original language name
Lifting problem for universal quadratic forms
Original language description
We study totally real number fields that admit a universal quadratic form whose coefficients are rational integers. We show that Q(root 5) is the only such real quadratic field, and that among fields of degrees 3, 4, 5, and 7 which have principal codifferent ideal, the only one is Q(zeta(7) + zeta(-1)(7)), over which the form x(2) + y(2) + z(2) + w(2) + xy + xz + xw is universal. Moreover, we prove an upper bound for Pythagoras numbers of orders in number fields that depends only on the degree of the number field. (C) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
377
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
107497
UT code for WoS article
000601332900023
EID of the result in the Scopus database
2-s2.0-85096819006