All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lifting problem for universal quadratic forms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438405" target="_blank" >RIV/00216208:11320/21:10438405 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=On3SHHrZRP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=On3SHHrZRP</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2020.107497" target="_blank" >10.1016/j.aim.2020.107497</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lifting problem for universal quadratic forms

  • Original language description

    We study totally real number fields that admit a universal quadratic form whose coefficients are rational integers. We show that Q(root 5) is the only such real quadratic field, and that among fields of degrees 3, 4, 5, and 7 which have principal codifferent ideal, the only one is Q(zeta(7) + zeta(-1)(7)), over which the form x(2) + y(2) + z(2) + w(2) + xy + xz + xw is universal. Moreover, we prove an upper bound for Pythagoras numbers of orders in number fields that depends only on the degree of the number field. (C) 2020 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    377

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    107497

  • UT code for WoS article

    000601332900023

  • EID of the result in the Scopus database

    2-s2.0-85096819006