A cubic ring of integers with the smallest Pythagoras number
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10437977" target="_blank" >RIV/00216208:11320/22:10437977 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vzxbShTHFL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vzxbShTHFL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00013-021-01662-5" target="_blank" >10.1007/s00013-021-01662-5</a>
Alternative languages
Result language
angličtina
Original language name
A cubic ring of integers with the smallest Pythagoras number
Original language description
We prove that the ring of integers in the totally real cubic subfield K-(49) of the cyclotomic field Q(zeta(7)) has Pythagoras number equal to 4. This is the smallest possible value for a totally real number field of odd degree. Moreover, we determine which numbers are sums of integral squares in this field, and use this knowledge to construct a diagonal universal quadratic form in five variables.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archiv der Mathematik
ISSN
0003-889X
e-ISSN
1420-8938
Volume of the periodical
2021
Issue of the periodical within the volume
118
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
39-48
UT code for WoS article
000709235300001
EID of the result in the Scopus database
2-s2.0-85117362493