Infinite-dimensional finitely forcible graphon
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10386920" target="_blank" >RIV/00216208:11320/19:10386920 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14330/19:00113678
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DsMJBpir_g" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DsMJBpir_g</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/plms.12203" target="_blank" >10.1112/plms.12203</a>
Alternative languages
Result language
angličtina
Original language name
Infinite-dimensional finitely forcible graphon
Original language description
Graphons are analytic objects associated with convergent sequences of dense graphs. Finitely forcible graphons, that is, those determined by finitely many subgraph densities, are of particular interest because of their relation to various problems in extremal combinatorics and theoretical computer science. Lovász and Szegedy conjectured that the topological space of typical vertices of a finitely forcible graphon always has finite dimension, which would have implications on the minimum number of parts in its weak ε-regular partition. We disprove the conjecture by constructing a finitely forcible graphon with the space of typical vertices that has infinite dimension.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the London Mathematical Society
ISSN
0024-6115
e-ISSN
—
Volume of the periodical
118
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
31
Pages from-to
826-856
UT code for WoS article
000462897100004
EID of the result in the Scopus database
2-s2.0-85054601654