Weak regularity and finitely forcible graph limits
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43956061" target="_blank" >RIV/49777513:23520/18:43956061 - isvavai.cz</a>
Result on the web
<a href="https://www.ams.org/journals/tran/2018-370-06/S0002-9947-2018-07066-0/S0002-9947-2018-07066-0.pdf" target="_blank" >https://www.ams.org/journals/tran/2018-370-06/S0002-9947-2018-07066-0/S0002-9947-2018-07066-0.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/7066" target="_blank" >10.1090/tran/7066</a>
Alternative languages
Result language
angličtina
Original language name
Weak regularity and finitely forcible graph limits
Original language description
Graphons are analytic objects representing limits of convergent sequences of graphs. Lovász and Szegedy conjectured that every finitely forcible graphon, i.e. any graphon determined by finitely many subgraph densities, has a simple structure. In particular, one of their conjectures would imply that every finitely forcible graphon has a weak ε-regular partition with the number of parts bounded by a polynomial in ε^{−1}. We construct a finitely forcible graphon W such that the number of parts in any weak ε-regular partition of W is at least exponential in ε^{−2}/2^{5 log* ε^{-2}}. This bound almost matches the known upper bound for graphs and, in a certain sense, is the best possible for graphons.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-19503S" target="_blank" >GA14-19503S: Graph coloring and structure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
370
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
3833-3864
UT code for WoS article
000428311400003
EID of the result in the Scopus database
2-s2.0-85044404667