All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weak regularity and finitely forcible graph limits

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43956061" target="_blank" >RIV/49777513:23520/18:43956061 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.ams.org/journals/tran/2018-370-06/S0002-9947-2018-07066-0/S0002-9947-2018-07066-0.pdf" target="_blank" >https://www.ams.org/journals/tran/2018-370-06/S0002-9947-2018-07066-0/S0002-9947-2018-07066-0.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/tran/7066" target="_blank" >10.1090/tran/7066</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weak regularity and finitely forcible graph limits

  • Original language description

    Graphons are analytic objects representing limits of convergent sequences of graphs. Lovász and Szegedy conjectured that every finitely forcible graphon, i.e. any graphon determined by finitely many subgraph densities, has a simple structure. In particular, one of their conjectures would imply that every finitely forcible graphon has a weak ε-regular partition with the number of parts bounded by a polynomial in ε^{−1}. We construct a finitely forcible graphon W such that the number of parts in any weak ε-regular partition of W is at least exponential in ε^{−2}/2^{5 log* ε^{-2}}. This bound almost matches the known upper bound for graphs and, in a certain sense, is the best possible for graphons.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-19503S" target="_blank" >GA14-19503S: Graph coloring and structure</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    370

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    3833-3864

  • UT code for WoS article

    000428311400003

  • EID of the result in the Scopus database

    2-s2.0-85044404667