Finitely Forcible Graphons with an Almost Arbitrary Structure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00116815" target="_blank" >RIV/00216224:14330/20:00116815 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.19086/da.12058" target="_blank" >http://dx.doi.org/10.19086/da.12058</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.19086/da.12058" target="_blank" >10.19086/da.12058</a>
Alternative languages
Result language
angličtina
Original language name
Finitely Forcible Graphons with an Almost Arbitrary Structure
Original language description
Graphons are analytic objects representing convergent sequences of large graphs. A graphon is said to be finitely forcible if it is determined by finitely many subgraph densities, i.e., if the asymptotic structure of graphs represented by such a graphon depends only on finitely many density constraints. Such graphons appear in various scenarios, particularly in extremal combinatorics. Lovasz and Szegedy conjectured that all finitely forcible graphons possess a simple structure. This was disproved in a strong sense by Cooper, Kral' and Martins, who showed that any graphon is a subgraphon of a finitely forcible graphon. We strengthen this result by showing for every epsilon > 0 that any graphon spans a 1- epsilon proportion of a finitely forcible graphon.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Analysis
ISSN
2397-3129
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
9
Country of publishing house
GB - UNITED KINGDOM
Number of pages
36
Pages from-to
1-36
UT code for WoS article
000562346400001
EID of the result in the Scopus database
2-s2.0-85117058606