High-Temperature Wear Mechanisms of a Severely Plastic Deformed Al/Mg2Si Composite
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10389826" target="_blank" >RIV/00216208:11320/19:10389826 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_JIuVL1PEn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_JIuVL1PEn</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4041764" target="_blank" >10.1115/1.4041764</a>
Alternative languages
Result language
angličtina
Original language name
High-Temperature Wear Mechanisms of a Severely Plastic Deformed Al/Mg2Si Composite
Original language description
The present work was primarily conducted to study the wear behavior of as-received and severely deformed Al-15%Mg2Si in situ composites. The severe plastic deformation was applied using accumulative back extrusion (ABE) technique (one and three passes). The continuous dynamic recrystallization (CDRX) was recognized as the main strain accommodation and grain refinement mechanism within aluminum matrix during ABE cycles. To investigate the wear properties of the processed material, the dry sliding wear tests were carried out on both the as-received and processed samples under normal load of 10 and 20 N at room temperature, 100 degrees C, and 200 degrees C. The results indicated a better wear resistance of processed specimens in comparison to the as-received ones at room temperature. In addition, the wear performance was improved as the ABE pass numbers increased. These were related to the presence of oxide tribolayer. At 100 degrees C, the as-received material exhibited a better wear performance compared to the processed material; this was attributed to the formation of a work-hardened layer on the worn surface. At 200 degrees C, both the as-received and processed composites experienced a severe wear condition. In general, elevating the temperature changed the dominant wear mechanism from oxidation and delamination at room temperature to severe adhesion and plastic deformation at 200 degrees C.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Tribology
ISSN
0742-4787
e-ISSN
—
Volume of the periodical
141
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
031604
UT code for WoS article
000457029800011
EID of the result in the Scopus database
2-s2.0-85057196811