All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Taylor term does not imply any nontrivial linear one-equality Maltsev condition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10391985" target="_blank" >RIV/00216208:11320/19:10391985 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=q..FWVo86o" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=q..FWVo86o</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00012-019-0580-x" target="_blank" >10.1007/s00012-019-0580-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Taylor term does not imply any nontrivial linear one-equality Maltsev condition

  • Original language description

    It is known that any finite idempotent algebra that satisfies a nontrivial Maltsev condition must satisfy the linear one-equality Maltsev condition (a variant of the term discovered by Siggers and refined by Kearnes, Markovi, and McKenzie): We show that if we drop the finiteness assumption, the k-ary weak near unanimity equations imply only trivial linear one-equality Maltsev conditions for every k3. From this it follows that there is no nontrivial linear one-equality condition that would hold in all idempotent algebras having Taylor terms. Miroslav Olak has recently shown that there is a weakest nontrivial strong Maltsev condition for idempotent algebras. Olak has found several such (mutually equivalent) conditions consisting of two or more equations. Our result shows that Olak&apos;s equation systems cannot be compressed into just one equation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebra Universalis

  • ISSN

    0002-5240

  • e-ISSN

  • Volume of the periodical

    80

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000457680200003

  • EID of the result in the Scopus database

    2-s2.0-85062427851