All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Z2-genus of graphs and minimum rank of partial symmetric matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10398870" target="_blank" >RIV/00216208:11320/19:10398870 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.SoCG.2019.39" target="_blank" >https://doi.org/10.4230/LIPIcs.SoCG.2019.39</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.39" target="_blank" >10.4230/LIPIcs.SoCG.2019.39</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Z2-genus of graphs and minimum rank of partial symmetric matrices

  • Original language description

    The genus g(G) of a graph G is the minimum g such that G has an embedding on the orientable surface M_g of genus g. A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z_2-genus of a graph G, denoted by g_0(G), is the minimum g such that G has an independently even drawing on M_g. We prove the following. If G is a union of G_1 and G_2 where G_1 and G_2 intersect in two vertices u and, and G-u-v has k connected components (among which we count the edge uv if present, then |g_0(G)-(g_0(G_1)+g_0(G_2))|&lt;= k+1. For complete bipartite graphs K_{m,n}, with n&gt;= m&gt;= 3, we prove that g_0(K_{m,n})/g(K_{m,n})=1-O(1/n). Similar results are proved also for the Euler genus.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ19-04113Y" target="_blank" >GJ19-04113Y: Advanced tools in combinatorics, topology and related areas</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics (LIPIcs)

  • ISBN

    978-3-95977-104-7

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    1-16

  • Publisher name

    Schloss Dagstuhl-Leibniz-Zentrum fuer Informati

  • Place of publication

    Dagstuhl

  • Event location

    Portland, Oregon

  • Event date

    Jun 18, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article