All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10399544" target="_blank" >RIV/00216208:11320/19:10399544 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AcEsQiexU1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AcEsQiexU1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-018-38188-w" target="_blank" >10.1038/s41598-018-38188-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications

  • Original language description

    Because of its ideal band gap, high density and high electron mobility-lifetime product, cadmium zinc telluride (CdZnTe or CZT) is currently the best room-temperature compound-semiconductor X- and gamma-ray detector material. However, because of its innate poor thermo-physical properties and above unity segregation coefficient for Zn, the wide spread deployment of this material in large-volume CZT detectors is still limited by the high production cost. The underlying reason for the low yield of high-quality material is that CZT suffers from three major detrimental defects: compositional inhomogeneity, high concentrations of dislocation walls/sub-grain boundary networks and high concentrations of Te inclusions/precipitates. To mitigate all these disadvantages, we report for the first time the effects of the addition of selenium to the CZT matrix. The addition of Se was found to be very effective in arresting the formation of sub-grain boundaries and its networks, significantly reducing Zn segregation, improving compositional homogeneity and resulting in much lower concentrations of Te inclusions/precipitates. Growth of the new quaternary crystal Cd1-xZnxTe1-ySey (CZTS) by the Traveling Heater Method (THM) is reported in this paper. We have demonstrated the production of much higher yield according to its compositional homogeneity, with substantially lower sub-grain boundaries and their network, and a lower concentration of Te inclusions/precipitates.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/GA18-06818S" target="_blank" >GA18-06818S: Development of high energy CdSeTe and CdZnSeTe radiation detectors</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    1620

  • UT code for WoS article

    000458017800088

  • EID of the result in the Scopus database

    2-s2.0-85061241181