All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Data depth for measurable noisy random functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10399730" target="_blank" >RIV/00216208:11320/19:10399730 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BNNqCSHoMf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BNNqCSHoMf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmva.2018.11.003" target="_blank" >10.1016/j.jmva.2018.11.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Data depth for measurable noisy random functions

  • Original language description

    In the literature on data depth applicable to random functions, it is usually assumed that the trajectories of all the random curves are continuous, known at each point of the domain, and observed exactly. These assumptions turn out to be unrealistic in practice, as the functions are often observed only on a finite grid of time points, and in the presence of measurement errors. In this work, we provide the necessary theoretical background enabling the extension of the statistical methodology based on data depth to measurable (not necessarily continuous) random functions observed within the latter framework. It is shown that even if the random functions are discontinuous, observed discretely, and contaminated with additive noise, many common depth functionals maintain the fine consistency properties valid in the ideal case of completely observed noiseless functions. For the integrated depth for functions, we provide uniform rates of convergence over the space of integrable functions. (C) 2018 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GJ18-00522Y" target="_blank" >GJ18-00522Y: Advanced Econometric Models for Option Pricing – AdEMOP</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Multivariate Analysis

  • ISSN

    0047-259X

  • e-ISSN

  • Volume of the periodical

    170

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    95-114

  • UT code for WoS article

    000457205300008

  • EID of the result in the Scopus database

    2-s2.0-85057727651