All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On orthogonal symmetric chain decompositions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10400341" target="_blank" >RIV/00216208:11320/19:10400341 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pNNBfKX8Cx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pNNBfKX8Cx</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On orthogonal symmetric chain decompositions

  • Original language description

    The n-cube is the poset obtained by ordering all subsets of {1, ..., n} by inclusion, and it can be partitioned into ((n)(left perpendicular n/2 right perpendicular)) chains, which is the minimum possible number. Two such decompositions of the n-cube are called orthogonal if any two chains of the decompositions share at most a single element. Shearer and Kleit-man conjectured in 1979 that the n-cube has left perpendicular n/2 right perpendicular+ 1 pairwise orthogonal decompositions into the minimum number of chains, and they constructed two such decompositions. Spink recently improved this by showing that the n-cube has three pairwise orthogonal chain decompositions for n &gt;= 24. In this paper, we construct four pairwise orthogonal chain decompositions of the n-cube for n &gt;= 60. We also construct five pairwise edge-disjoint symmetric chain decompositions of the n-cube for n &gt;= 90, where edge-disjointness is a slightly weaker notion than orthogonality, improving on a recent result by Gregor, Jager, Mutze, Sawada, and Wille.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Combinatorics

  • ISSN

    1077-8926

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    P3.64

  • UT code for WoS article

    000488213000010

  • EID of the result in the Scopus database

    2-s2.0-85073629489