Gray codes and symmetric chains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384208" target="_blank" >RIV/00216208:11320/18:10384208 - isvavai.cz</a>
Result on the web
<a href="http://drops.dagstuhl.de/opus/volltexte/2018/9070" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2018/9070</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.66" target="_blank" >10.4230/LIPIcs.ICALP.2018.66</a>
Alternative languages
Result language
angličtina
Original language name
Gray codes and symmetric chains
Original language description
We consider the problem of constructing a cyclic listing of all bitstrings of length 2n+1 with Hamming weights in the interval [n+1-l,n+l], where 1 <= l <= n+1, by flipping a single bit in each step. This is a far-ranging generalization of the well-known middle two levels problem (l=1). We provide a solution for the case l=2 and solve a relaxed version of the problem for general values of l, by constructing cycle factors for those instances. Our proof uses symmetric chain decompositions of the hypercube, a concept known from the theory of posets, and we present several new constructions of such decompositions. In particular, we construct four pairwise edge-disjoint symmetric chain decompositions of the n-dimensional hypercube for any n >= 12.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics (LIPIcs)
ISBN
978-3-95977-076-7
ISSN
1868-8969
e-ISSN
neuvedeno
Number of pages
14
Pages from-to
1-14
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl, Germany
Event location
Praha
Event date
Jul 9, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—