All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the central levels problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10418932" target="_blank" >RIV/00216208:11320/20:10418932 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.ICALP.2020.60" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2020.60</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.60" target="_blank" >10.4230/LIPIcs.ICALP.2020.60</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the central levels problem

  • Original language description

    The central levels problem asserts that the subgraph of the (2m+1)-dimensional hypercube induced by all bitstrings with at least m+1-???? many 1s and at most m+???? many 1s, i.e., the vertices in the middle 2???? levels, has a Hamilton cycle for any m &gt;= 1 and 1 &lt;= ???? &lt;= m+1. This problem was raised independently by Savage, by Gregor and Škrekovski, and by Shen and Williams, and it is a common generalization of the well-known middle levels problem, namely the case ???? = 1, and classical binary Gray codes, namely the case ???? = m+1. In this paper we present a general constructive solution of the central levels problem. Our results also imply the existence of optimal cycles through any sequence of ???? consecutive levels in the n-dimensional hypercube for any n &gt;= 1 and 1 &lt;= ???? &lt;= n+1. Moreover, extending an earlier construction by Streib and Trotter, we construct a Hamilton cycle through the n-dimensional hypercube, n&gt;= 2, that contains the symmetric chain decomposition constructed by Greene and Kleitman in the 1970s, and we provide a loopless algorithm for computing the corresponding Gray code.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-138-2

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    1-17

  • Publisher name

    Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Saarbrücken, Germany

  • Event date

    Jul 8, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article