All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Star transposition Gray codes for multiset permutations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476030" target="_blank" >RIV/00216208:11320/23:10476030 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0k8Yngo_6b" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0k8Yngo_6b</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.22915" target="_blank" >10.1002/jgt.22915</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Star transposition Gray codes for multiset permutations

  • Original language description

    Given integers k &gt;= 2 and a_1,...,a_k &gt;= 1, let a:= (a_1,...,a_k) and n:= a_1+...+a_k. An a-multiset permutation is a string of length n that contains exactly a_i symbols i for each i=1,...,k. In this work we consider the problem of exhaustively generating all a-multiset permutations by star transpositions, that is, in each step, the first entry of the string is transposed with any other entry distinct from the first one. This is a far-ranging generalization of several known results. For example, it is known that permutations (a_1=...=a_k=1) can be generated by star transpositions, while combinations (k=2) can be generated by these operations if and only if they are balanced (a_1=a_2), with the positive case following from the middle levels theorem. To understand the problem in general, we introduce a parameter Delta(a):= n-2max{a_1,...,a_k} that allows us to distinguish three different regimes for this problem. We show that if Delta(a)&lt;0, then a star transposition Gray code for a-multiset permutations does not exist. We also construct such Gray codes for the case Delta(a)&gt;0, assuming that they exist for the case Delta(a)=0. For the case Delta(a)=0 we present some partial positive results. Our proofs establish Hamilton-connectedness or Hamilton-laceability of the underlying flip graphs, and they answer several cases of a recent conjecture of Shen and Williams. In particular, we prove that the middle levels graph is Hamilton-laceable.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

    1097-0118

  • Volume of the periodical

    103

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    59

  • Pages from-to

    212-270

  • UT code for WoS article

    000909562200001

  • EID of the result in the Scopus database

    2-s2.0-85146162944