Star transposition Gray codes for multiset permutations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476030" target="_blank" >RIV/00216208:11320/23:10476030 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0k8Yngo_6b" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0k8Yngo_6b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22915" target="_blank" >10.1002/jgt.22915</a>
Alternative languages
Result language
angličtina
Original language name
Star transposition Gray codes for multiset permutations
Original language description
Given integers k >= 2 and a_1,...,a_k >= 1, let a:= (a_1,...,a_k) and n:= a_1+...+a_k. An a-multiset permutation is a string of length n that contains exactly a_i symbols i for each i=1,...,k. In this work we consider the problem of exhaustively generating all a-multiset permutations by star transpositions, that is, in each step, the first entry of the string is transposed with any other entry distinct from the first one. This is a far-ranging generalization of several known results. For example, it is known that permutations (a_1=...=a_k=1) can be generated by star transpositions, while combinations (k=2) can be generated by these operations if and only if they are balanced (a_1=a_2), with the positive case following from the middle levels theorem. To understand the problem in general, we introduce a parameter Delta(a):= n-2max{a_1,...,a_k} that allows us to distinguish three different regimes for this problem. We show that if Delta(a)<0, then a star transposition Gray code for a-multiset permutations does not exist. We also construct such Gray codes for the case Delta(a)>0, assuming that they exist for the case Delta(a)=0. For the case Delta(a)=0 we present some partial positive results. Our proofs establish Hamilton-connectedness or Hamilton-laceability of the underlying flip graphs, and they answer several cases of a recent conjecture of Shen and Williams. In particular, we prove that the middle levels graph is Hamilton-laceable.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
1097-0118
Volume of the periodical
103
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
59
Pages from-to
212-270
UT code for WoS article
000909562200001
EID of the result in the Scopus database
2-s2.0-85146162944