The Hamilton Compression of Highly Symmetric Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10450700" target="_blank" >RIV/00216208:11320/22:10450700 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.MFCS.2022.54" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2022.54</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2022.54" target="_blank" >10.4230/LIPIcs.MFCS.2022.54</a>
Alternative languages
Result language
angličtina
Original language name
The Hamilton Compression of Highly Symmetric Graphs
Original language description
We say that a Hamilton cycle C = (x1,...,xn) in a graph G is k-symmetric, if the mapping xi RIGHTWARDS ARROW xi+n/k for all i = 1,...,n, where indices are considered modulo n, is an automorphism of G. In other words, if we lay out the vertices x1,...,xn equidistantly on a circle and draw the edges of G as straight lines, then the drawing of G has k-fold rotational symmetry, i.e., all information about the graph is compressed into a 360°/k wedge of the drawing. We refer to the maximum k for which there exists a k-symmetric Hamilton cycle in G as the Hamilton compression of G. We investigate the Hamilton compression of four different families of vertex-transitive graphs, namely hypercubes, Johnson graphs, permutahedra and Cayley graphs of abelian groups. In several cases we determine their Hamilton compression exactly, and in other cases we provide close lower and upper bounds. The cycles we construct have a much higher compression than several classical Gray codes known from the literature. Our constructions also yield Gray codes for bitstrings, combinations and permutations that have few tracks and/or that are balanced.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-15272S" target="_blank" >GA22-15272S: Principles of combinatorial generation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-256-3
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
1-14
Publisher name
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl, Německo
Event location
Vienna
Event date
Aug 22, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—