All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A continuous analogue of Erdős' k-Sperner theorem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00517694" target="_blank" >RIV/67985840:_____/20:00517694 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10422171

  • Result on the web

    <a href="https://doi.org/10.1016/j.jmaa.2019.123754" target="_blank" >https://doi.org/10.1016/j.jmaa.2019.123754</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2019.123754" target="_blank" >10.1016/j.jmaa.2019.123754</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A continuous analogue of Erdős' k-Sperner theorem

  • Original language description

    A chain in the unit n-cube is a set C⊂[0,1]n such that for every x=(x1,…,xn) and y=(y1,…,yn) in C we either have xi≤yi for all i∈[n], or xi≥yi for all i∈[n]. We show that the 1-dimensional Hausdorff measure of a chain in the unit n-cube is at most n, and that the bound is sharp. Given this result, we consider the problem of maximising the n-dimensional Lebesgue measure of a measurable set A⊂[0,1]n subject to the constraint that it satisfies H1(A∩C)≤κ for all chains C⊂[0,1]n, where κ is a fixed real number from the interval (0,n]. We show that the measure of A is not larger than the measure of the following optimal set: Aκ⁎={(x1,…,xn)∈[0,1]n:n−κ2≤∑i=1nxi≤n+κ2}. Our result may be seen as a continuous counterpart to a theorem of Erdős, regarding k-Sperner families of finite sets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-01472Y" target="_blank" >GJ18-01472Y: Graph limits and inhomogeneous random graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    484

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    123754

  • UT code for WoS article

    000509426500020

  • EID of the result in the Scopus database

    2-s2.0-85076318752