All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Projection inequalities for antichains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532203" target="_blank" >RIV/67985840:_____/20:00532203 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s11856-020-2013-0" target="_blank" >https://doi.org/10.1007/s11856-020-2013-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-020-2013-0" target="_blank" >10.1007/s11856-020-2013-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Projection inequalities for antichains

  • Original language description

    Let n be an integer with n ≥ 2. A set A ⊆ ℝn is called an antichain (resp. weak antichain) if it does not contain two distinct elements x = (x1, …, xn) and y = (y1, …, yn) satisfying xi ≤ yi (resp. xi < yi) for all i ∈ {1, …, n}. We show that the Hausdorff dimension of a weak antichain A in the n-dimensional unit cube [0, 1]n is at most n − 1 and that the (n − 1)-dimensional Hausdorff measure of A is at most n, which are the best possible bounds. This result is derived as a corollary of the following projection inequality, which may be of independent interest: The (n −1)- dimensional Hausdorff measure of a (weak) antichain A ⊆ [0, 1]n cannot exceed the sum of the (n − 1)-dimensional Hausdorff measures of the n orthogonal projections of A onto the facets of the unit n-cube containing the origin. For the proof of this result we establish a discrete variant of the projection inequality applicable to weak antichains in ℤn and combine it with ideas from geometric measure theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-01472Y" target="_blank" >GJ18-01472Y: Graph limits and inhomogeneous random graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Volume of the periodical

    238

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IL - THE STATE OF ISRAEL

  • Number of pages

    30

  • Pages from-to

    61-90

  • UT code for WoS article

    000534408400006

  • EID of the result in the Scopus database

    2-s2.0-85085371997