All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On k-antichains in the unit n-cube

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524142" target="_blank" >RIV/67985840:_____/20:00524142 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/20:10422172

  • Result on the web

    <a href="http://dx.doi.org/10.5486/PMD.2020.8787" target="_blank" >http://dx.doi.org/10.5486/PMD.2020.8787</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5486/PMD.2020.8787" target="_blank" >10.5486/PMD.2020.8787</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On k-antichains in the unit n-cube

  • Original language description

    A chain in the unit n-cube is a set C ⊂ [0, 1]n such that for every x = (x1, . . . , xn) and y = (y1, . . . , yn) in C, we either have xi ≤ yi for all i ∈ [n], or xi ≥ yi for all i ∈ [n]. We consider subsets A, of the unit n-cube [0, 1]n, that satisfy card(A ∩ C) ≤ k, for all chains C ⊂ [0, 1]n, where k is a fixed positive integer. We refer to such a set A as a k-antichain. We show that the (n − 1)-dimensional Hausdorff measure of a k-antichain in [0, 1]n is at most kn and that the bound is asymptotically sharp. Moreover, we conjecture that there exist k-antichains in [0, 1]n whose (n − 1)-dimensional Hausdorff measure equals kn, and we verify the validity of this conjecture when n = 2.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-01472Y" target="_blank" >GJ18-01472Y: Graph limits and inhomogeneous random graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Publicationes Mathematicae-Debrecen

  • ISSN

    0033-3883

  • e-ISSN

  • Volume of the periodical

    96

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    9

  • Pages from-to

    503-511

  • UT code for WoS article

    000530645200015

  • EID of the result in the Scopus database

    2-s2.0-85091172898