All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Star Transposition Gray Codes for Multiset Permutations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10450676" target="_blank" >RIV/00216208:11320/22:10450676 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.STACS.2022.34" target="_blank" >https://doi.org/10.4230/LIPIcs.STACS.2022.34</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2022.34" target="_blank" >10.4230/LIPIcs.STACS.2022.34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Star Transposition Gray Codes for Multiset Permutations

  • Original language description

    Given integers k &gt;= 2 and a1, . . ., ak &gt;= 1, let a := (a1, . . ., ak) and n := a1 + . . . + ak. An a-multiset permutation is a string of length n that contains exactly ai symbols i for each i = 1, . . ., k. In this work we consider the problem of exhaustively generating all a-multiset permutations by star transpositions, i.e., in each step, the first entry of the string is transposed with any other entry distinct from the first one. This is a far-ranging generalization of several known results. For example, it is known that permutations (a1 = . . . = ak = 1) can be generated by star transpositions, while combinations (k = 2) can be generated by these operations if and only if they are balanced (a1 = a2), with the positive case following from the middle levels theorem. To understand the problem in general, we introduce a parameter Delta(a):= n - 2 max{a1, . . ., ak} that allows us to distinguish three different regimes for this problem. We show that if Delta(a) &lt; 0, then a star transposition Gray code for a-multiset permutations does not exist. We also construct such Gray codes for the case Delta(a) &gt; 0, assuming that they exist for the case INCREMENT (a) = 0. For the case Delta(a) = 0 we present some partial positive results. Our proofs establish Hamilton-connectedness or Hamilton-laceability of the underlying flip graphs, and they answer several cases of a recent conjecture of Shen and Williams. In particular, we prove that the middle levels graph is Hamilton-laceable.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-222-8

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    1-14

  • Publisher name

    Schloss Dagstuhl - Leibniz-Zentrum fur Informatik

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Virtual, Marseille

  • Event date

    May 15, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article