All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the central levels problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10467258" target="_blank" >RIV/00216208:11320/23:10467258 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U5UyvVh~93" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U5UyvVh~93</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jctb.2022.12.008" target="_blank" >10.1016/j.jctb.2022.12.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the central levels problem

  • Original language description

    The central levels problemasserts that the subgraph of the (2m + 1)-dimensional hypercube induced by all bitstrings with at least m + 1 - l many 1s and at most m + l many 1s, i.e., the vertices in the middle 2 l levels, has a Hamilton cycle for any m &gt;= 1and 1 &lt;= l &lt;= m + 1. This problem was raised independently by Buck and Wiedemann, Savage, Gregor and Skrekovski, and by Shen and Williams, and it is a common generalization of the well-known middle levels problem, namely the case l= 1, and classical binary Gray codes, namely the case l = m + 1. In this paper we present a general constructive solution of the central levels problem. Our results also imply the existence of optimal cycles through any sequence of l consecutive levels in the n-dimensional hypercube for any n &gt;= 1and 1 &lt;= l = n + 1. Moreover, extending an earlier construction by Streib and Trotter, we construct a Hamilton cycle through the ndimensional hypercube, n &gt;= 2, that contains the symmetric chain decomposition constructed by Greene and Kleitman in

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory. Series B

  • ISSN

    0095-8956

  • e-ISSN

    1096-0902

  • Volume of the periodical

    160

  • Issue of the periodical within the volume

    May 2023

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    43

  • Pages from-to

    163-205

  • UT code for WoS article

    001031049700001

  • EID of the result in the Scopus database

    2-s2.0-00000000000