All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Completion and torsion over commutative DG rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10400358" target="_blank" >RIV/00216208:11320/19:10400358 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nJ5~nYPOy1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nJ5~nYPOy1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-019-1866-6" target="_blank" >10.1007/s11856-019-1866-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Completion and torsion over commutative DG rings

  • Original language description

    Let CDG(cont) be the category whose objects are pairs (A, (a) over bar), where A is a commutative DG-algebra and (a) over bar subset of H-0(A) is a finitely generated ideal, and whose morphisms f : (A, (a) over bar) -&gt; (B, (b) over bar) are morphisms of DG-algebras A -&gt; B, such that (H0(f)((a) over bar)) subset of (b) over bar. Letting Ho(CDG(cont)) be its homotopy category, obtained by inverting adic quasi-isomorphisms, we construct a functor L. : Ho(CDG(cont)) -&gt; Ho(CDG(cont)) which takes a pair (A, (a) over bar) into its non-abelian derived (a) over bar -adic completion. We show that this operation has, in a derived sense, the usual properties of adic completion of commutative rings, and that if A = H-0(A) is an ordinary noetherian ring, this operation coincides with ordinary adic completion. As an application, following a question of Buchweitz and Flenner, we show that if k is a commutative ring, and A is a commutative k-algebra which is a-adically complete with respect to a finitely generated ideal a subset of A, then the derived Hochschild cohomology modules Ext(A circle times LkA)(n) (A, A) and the derived complete Hochschild cohomology modules Ext(A (circle times) over cap LkA)(n) (A, A) coincide, without assuming any finiteness or noetherian conditions on k, A or on the map k -&gt; A.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    IL - THE STATE OF ISRAEL

  • Number of pages

    58

  • Pages from-to

    531-588

  • UT code for WoS article

    000480562000002

  • EID of the result in the Scopus database

    2-s2.0-85070370803