All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Smooth flat maps over commutative DG-rings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436301" target="_blank" >RIV/00216208:11320/21:10436301 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b3Fok0pqke" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b3Fok0pqke</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00209-021-02748-0" target="_blank" >10.1007/s00209-021-02748-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Smooth flat maps over commutative DG-rings

  • Original language description

    We study smooth maps that arise in derived algebraic geometry. Given a map A -&gt; B between non-positive commutative noetherian DG-rings which is of flat dimension 0, we show that it is smooth in the sense of Toen-Vezzosi if and only if it is homologically smooth in the sense of Kontsevich. We then show that B, being a perfect DG-module over B circle times(L)(A) B has, locally, an explicit semi-free resolution as a Koszul complex. As an application we show that a strong form of Van den Bergh duality between (derived) Hochschild homology and cohomology holds in this setting.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ20-02760Y" target="_blank" >GJ20-02760Y: Cohen-Macaulay rings and their applications in higher algebra and topology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Zeitschrift

  • ISSN

    0025-5874

  • e-ISSN

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    299

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    1673-1688

  • UT code for WoS article

    000640866400002

  • EID of the result in the Scopus database

    2-s2.0-85104890896