All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On multiplicative equivalences that are totally incompatible with division

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10400364" target="_blank" >RIV/00216208:11320/19:10400364 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iloMYIiE3K" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iloMYIiE3K</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00012-019-0605-5" target="_blank" >10.1007/s00012-019-0605-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On multiplicative equivalences that are totally incompatible with division

  • Original language description

    An equivalence similar to upon a loop is said to be multiplicative if it satisfies x similar to y, u similar to v double right arrow xu similar to yv. Let X be a set with elements x not equal y and let similar to be the least multiplicative equivalence upon a free loop F(X) for which x similar to y. If a,b is an element of F(X) are such that a not equal b and a similar to b, then neither ac similar to bc nor c/a similar to c/b is true, for every c is an element of F(X).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebra Universalis

  • ISSN

    0002-5240

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    80:32

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000477566900002

  • EID of the result in the Scopus database

    2-s2.0-85069684054