All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Middle Bruck Loops and the Total Multiplication Group

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452394" target="_blank" >RIV/00216208:11320/22:10452394 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XKLBsNFunr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XKLBsNFunr</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00025-022-01716-2" target="_blank" >10.1007/s00025-022-01716-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Middle Bruck Loops and the Total Multiplication Group

  • Original language description

    Let Q be a loop. The mappings x bar right arrow ax, x bar right arrow xa and x bar right arrow a/x are denoted by L-a, R-a. and D-a, respectively. The loop is said to be middle Bruck if for all a, b is an element of Q there exists c is an element of Q such that DaDbDa = D-c. The right inverse of Q is the loop with operation x/(y1). It is proved that Q is middle Bruck if and only if the right inverse of Q is left Bruck (i.e., a left Bol loop in which (xy)(-1) = x(-1) y(-1)). Middle Bruck loops are characterized in group theoretic language as transversals T to H &lt;= G such that &lt; T &gt; = G, T-G = T and t(2) = 1 for each t is an element of T. Other results include the fact that if Q is a finite loop, then the total multiplication group &lt; L-a, R-a, D-a; a is an element of Q &gt; is nilpotent if and only if Q is a centrally nilpotent 2-loop, and the fact that total multiplication groups of paratopic loops are isomorphic.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Results in Mathematics

  • ISSN

    1422-6383

  • e-ISSN

    1420-9012

  • Volume of the periodical

    77

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    27

  • Pages from-to

    174

  • UT code for WoS article

    000824640300001

  • EID of the result in the Scopus database

    2-s2.0-85134315033