A short proof for the central nilpotency of Moufang loops of prime power order
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471878" target="_blank" >RIV/00216208:11320/23:10471878 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dJZBxtGlJr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dJZBxtGlJr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2023.07.025" target="_blank" >10.1016/j.jalgebra.2023.07.025</a>
Alternative languages
Result language
angličtina
Original language name
A short proof for the central nilpotency of Moufang loops of prime power order
Original language description
The main result is an elementary proof of the nilpotency of Moufang loops which are of prime power order. Besides basic properties of Moufang loops and Sylow theorems, the proof relies on the fact that a relative multiplication group of a (centrally nilpotent) subloop of order pk is a p-group in any finite Moufang loop Q, and that L-1 & phi;(x)& phi;Lx & phi;-1 and R-1 & phi;(x) & phi;Rx & phi;-1 are pseudoautomorphisms of Q whenever x & ISIN; Q and & phi; is a pseudoautomorphism of Q. & COPY; 2023 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
1090-266X
Volume of the periodical
635
Issue of the periodical within the volume
1 December 2023
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
203-219
UT code for WoS article
001062223700001
EID of the result in the Scopus database
2-s2.0-85167808438