Notes on extended equation solvability and identity checking for groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401291" target="_blank" >RIV/00216208:11320/19:10401291 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=09pKgK-TP3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=09pKgK-TP3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10474-019-00924-7" target="_blank" >10.1007/s10474-019-00924-7</a>
Alternative languages
Result language
angličtina
Original language name
Notes on extended equation solvability and identity checking for groups
Original language description
Every finite non-nilpotent group can be extended by a term operation such that solving equations in the resulting algebra is NP-complete and checking identities is co-NP-complete. This result was firstly proven by Horvath and Szabo; the term constructed in their proof depends on the underlying group. In this paper we provide a uniform term extension that induces hard problems. In doing so we also characterize a big class of solvable, non-nilpotent groups for which extending by the commutator operation suffices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-20123S" target="_blank" >GA18-20123S: Expanding the Scope of Universal Algebra</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Hungarica
ISSN
0236-5294
e-ISSN
—
Volume of the periodical
2019
Issue of the periodical within the volume
159
Country of publishing house
HU - HUNGARY
Number of pages
11
Pages from-to
246-256
UT code for WoS article
000486228800016
EID of the result in the Scopus database
2-s2.0-85063011985