Three Concepts of Nilpotence in Loops
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471405" target="_blank" >RIV/00216208:11320/23:10471405 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=n99XRiK6d6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=n99XRiK6d6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-023-01882-x" target="_blank" >10.1007/s00025-023-01882-x</a>
Alternative languages
Result language
angličtina
Original language name
Three Concepts of Nilpotence in Loops
Original language description
We introduce the abstract concept of supernilpotence in loop theory, and relate it to existing concepts, namely, central nilpotence and nilpotence of the multiplication group. We prove that the class of supernilpotence is greater or equal than the class of nilpotence of the multiplication group, and combining existing results, we show that a finite loop is supernilpotent if and only if its multiplication group is nilpotent. We also provide a new exposition of a classical result and crucial ingredient, that loops with a nilpotent multiplication group are centrally nilpotent and admit a prime decomposition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Results in Mathematics
ISSN
1422-6383
e-ISSN
1420-9012
Volume of the periodical
78
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
119
UT code for WoS article
000965197300002
EID of the result in the Scopus database
2-s2.0-85152637767