Extensions of unificationmodulo ACUI
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401391" target="_blank" >RIV/00216208:11320/19:10401391 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FewD6L6rkB" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FewD6L6rkB</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0960129519000185" target="_blank" >10.1017/S0960129519000185</a>
Alternative languages
Result language
angličtina
Original language name
Extensions of unificationmodulo ACUI
Original language description
The theory ACUI of an associative, commutative, and idempotent binary function symbol + with unit 0 was one of the first equational theories for which the complexity of testing solvability of unification problems was investigated in detail. In this paper, we investigate two extensions of ACUI. On one hand, we consider approximate ACUI-unification, where we use appropriate measures to express how close a substitution is to being a unifier. On the other hand, we extend ACUI-unification to ACUIG-unification, that is, unification in equational theories that are obtained from ACUI by adding a finite set G of ground identities. Finally, we combine the two extensions, that is, consider approximate ACUI-unification. For all cases we are able to determine the exact worst-case complexity of the unification problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Structures in Computer Science [online]
ISSN
1469-8072
e-ISSN
—
Volume of the periodical
2019
Issue of the periodical within the volume
2019
Country of publishing house
GB - UNITED KINGDOM
Number of pages
30
Pages from-to
1-30
UT code for WoS article
—
EID of the result in the Scopus database
—