All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ehrenfest regularization of Hamiltonian systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401410" target="_blank" >RIV/00216208:11320/19:10401410 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/19:00333728

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wkyj7bX60f" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wkyj7bX60f</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.physd.2019.06.006" target="_blank" >10.1016/j.physd.2019.06.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ehrenfest regularization of Hamiltonian systems

  • Original language description

    Imagine a freely rotating rigid body. The body has three principal axes of rotation. It follows from mathematical analysis of the evolution equations that pure rotations around the major and minor axes are stable while rotation around the middle axis is unstable. However, only rotation around the major axis (with highest moment of inertia) is stable in physical reality (as demonstrated by the unexpected change of rotation of the Explorer 1 probe). We propose a general method of Ehrenfest regularization of Hamiltonian equations by which the reversible Hamiltonian equations are equipped with irreversible terms constructed from the Hamiltonian dynamics itself. The method is demonstrated on harmonic oscillator, rigid body motion (solving the problem of stable minor axis rotation), ideal fluid mechanics and kinetic theory. In particular, the regularization can be seen as a birth of irreversibility and dissipation. In addition, we discuss and propose discretizations of the Ehrenfest regularized evolution equations such that key model characteristics (behavior of energy and entropy) are valid in the numerical scheme as well. (C) 2019 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

    <a href="/en/project/GJ17-15498Y" target="_blank" >GJ17-15498Y: Multiscale Nonequilibrium Thermodynamics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physica D: Nonlinear Phenomena

  • ISSN

    0167-2789

  • e-ISSN

  • Volume of the periodical

    399

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    18

  • Pages from-to

    193-210

  • UT code for WoS article

    000482872900015

  • EID of the result in the Scopus database

    2-s2.0-85067649688