Ehrenfest regularization of Hamiltonian systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401410" target="_blank" >RIV/00216208:11320/19:10401410 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/19:00333728
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wkyj7bX60f" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wkyj7bX60f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2019.06.006" target="_blank" >10.1016/j.physd.2019.06.006</a>
Alternative languages
Result language
angličtina
Original language name
Ehrenfest regularization of Hamiltonian systems
Original language description
Imagine a freely rotating rigid body. The body has three principal axes of rotation. It follows from mathematical analysis of the evolution equations that pure rotations around the major and minor axes are stable while rotation around the middle axis is unstable. However, only rotation around the major axis (with highest moment of inertia) is stable in physical reality (as demonstrated by the unexpected change of rotation of the Explorer 1 probe). We propose a general method of Ehrenfest regularization of Hamiltonian equations by which the reversible Hamiltonian equations are equipped with irreversible terms constructed from the Hamiltonian dynamics itself. The method is demonstrated on harmonic oscillator, rigid body motion (solving the problem of stable minor axis rotation), ideal fluid mechanics and kinetic theory. In particular, the regularization can be seen as a birth of irreversibility and dissipation. In addition, we discuss and propose discretizations of the Ehrenfest regularized evolution equations such that key model characteristics (behavior of energy and entropy) are valid in the numerical scheme as well. (C) 2019 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GJ17-15498Y" target="_blank" >GJ17-15498Y: Multiscale Nonequilibrium Thermodynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physica D: Nonlinear Phenomena
ISSN
0167-2789
e-ISSN
—
Volume of the periodical
399
Issue of the periodical within the volume
December
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
193-210
UT code for WoS article
000482872900015
EID of the result in the Scopus database
2-s2.0-85067649688