A simplified aproach to rigorous degree 2 elimination in discrete logarithm algorithhms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401568" target="_blank" >RIV/00216208:11320/19:10401568 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LPR9VtIUzS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LPR9VtIUzS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/mcom/3404" target="_blank" >10.1090/mcom/3404</a>
Alternative languages
Result language
angličtina
Original language name
A simplified aproach to rigorous degree 2 elimination in discrete logarithm algorithhms
Original language description
In this paper, we revisit the ZigZag strategy of Granger, Kleinjung, and Zumbrägel. In particular, we provide a new algorithm and proof for the so-called degree 2 elimination step. This allows us to provide a stronger theorem concerning discrete logarithm computations in small characteristic fields $mathbb{F}_{q^{k_0k}}$ with $k$ close to $q$ and $k_0$ a small integer. As in the aforementioned paper, we rely on the existence of two polynomials $h_0$ and $h_1$ of degree $2$ providing a convenient representation of the finite field $mathbb{F}_{q^{k_0k}}$.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-19087S" target="_blank" >GA18-19087S: Cryptography based on Finite Fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics of Computation
ISSN
0025-5718
e-ISSN
—
Volume of the periodical
88/2019
Issue of the periodical within the volume
319
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
2485-2496
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85067600978