Jacobi-Perron algorithm and indecomposable integers in the simplest cubic fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10397049" target="_blank" >RIV/00216208:11320/19:10397049 - isvavai.cz</a>
Result on the web
<a href="http://ntc.osu.cz/cent2019" target="_blank" >http://ntc.osu.cz/cent2019</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Jacobi-Perron algorithm and indecomposable integers in the simplest cubic fields
Original language description
We will focus on indecomposable integers, one particular subset of algebraic integers in totally real extensions of $mathbb{Q}$. In the case of quadratic fields $mathbb{Q}(sqrt{D})$, we can get all of them using the continued fraction of $sqrt{D}$ or $frac{sqrt{D}-1}{2}$. Following this relation, we will show how to obtain these elements in the simplest cubic fields using the Jacobi-Perron algorithm, which generates one type of multidimensional continued fractions.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů