All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Jacobi-Perron algorithm and indecomposable integers in the simplest cubic fields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10397049" target="_blank" >RIV/00216208:11320/19:10397049 - isvavai.cz</a>

  • Result on the web

    <a href="http://ntc.osu.cz/cent2019" target="_blank" >http://ntc.osu.cz/cent2019</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Jacobi-Perron algorithm and indecomposable integers in the simplest cubic fields

  • Original language description

    We will focus on indecomposable integers, one particular subset of algebraic integers in totally real extensions of $mathbb{Q}$. In the case of quadratic fields $mathbb{Q}(sqrt{D})$, we can get all of them using the continued fraction of $sqrt{D}$ or $frac{sqrt{D}-1}{2}$. Following this relation, we will show how to obtain these elements in the simplest cubic fields using the Jacobi-Perron algorithm, which generates one type of multidimensional continued fractions.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů