All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Additive structure of totally positive quadratic integers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420802" target="_blank" >RIV/00216208:11320/20:10420802 - isvavai.cz</a>

  • Alternative codes found

    RIV/60461373:22340/19:43918395

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FkNCQ0D2-J" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FkNCQ0D2-J</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00229-019-01143-8" target="_blank" >10.1007/s00229-019-01143-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Additive structure of totally positive quadratic integers

  • Original language description

    LetK=Q(D)documentclass be a real quadratic field. We consider the additive semigroupOK+(+)documentclass of totally positive integers inKand determine its generators (indecomposable integers) and relations; they can be nicely described in terms of the periodic continued fraction forDdocumentclass. We also characterize all uniquely decomposable integers inKand estimate their norms. Using these results, we prove that the semigroupOK+(+)documentclass completely determines the real quadratic fieldK.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Manuscripta Mathematica

  • ISSN

    0025-2611

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    163

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    263-278

  • UT code for WoS article

    000557969100012

  • EID of the result in the Scopus database

    2-s2.0-85072125732