Additive structure of totally positive quadratic integers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420802" target="_blank" >RIV/00216208:11320/20:10420802 - isvavai.cz</a>
Alternative codes found
RIV/60461373:22340/19:43918395
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FkNCQ0D2-J" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FkNCQ0D2-J</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00229-019-01143-8" target="_blank" >10.1007/s00229-019-01143-8</a>
Alternative languages
Result language
angličtina
Original language name
Additive structure of totally positive quadratic integers
Original language description
LetK=Q(D)documentclass be a real quadratic field. We consider the additive semigroupOK+(+)documentclass of totally positive integers inKand determine its generators (indecomposable integers) and relations; they can be nicely described in terms of the periodic continued fraction forDdocumentclass. We also characterize all uniquely decomposable integers inKand estimate their norms. Using these results, we prove that the semigroupOK+(+)documentclass completely determines the real quadratic fieldK.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Manuscripta Mathematica
ISSN
0025-2611
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
163
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
263-278
UT code for WoS article
000557969100012
EID of the result in the Scopus database
2-s2.0-85072125732