All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On quadratic Waring's problem in totally real number fields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472014" target="_blank" >RIV/00216208:11320/23:10472014 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pw9Mfvvnk2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pw9Mfvvnk2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/16233" target="_blank" >10.1090/proc/16233</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On quadratic Waring's problem in totally real number fields

  • Original language description

    We improve the bound of the g-invariant of the ring of integers of a totally real number field, where the g-invariant g(r) is the smallest num - ber of squares of linear forms in r variables that is required to represent all the quadratic forms of rank r that are representable by the sum of squares. Specifically, we prove that the gOK (r) of the ring of integers OK of a totally real number field K is at most gZ([K : Q]r). Moreover, it can also be bounded by gOF ([K : F]r + 1) for any subfield F of K. This yields a subexponential upper bound for g(r) of each ring of integers (even if the class number is not 1). Further, we obtain a more general inequality for the lattice version G(r) of the invariant and apply it to determine the value of G(2) for all but one real quadratic field.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

    1088-6826

  • Volume of the periodical

    151

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    1471-1485

  • UT code for WoS article

    000917020100001

  • EID of the result in the Scopus database

    2-s2.0-85149247277