Halfspace depth and floating body
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401840" target="_blank" >RIV/00216208:11320/19:10401840 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zq02fiNRPO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zq02fiNRPO</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/19-SS123" target="_blank" >10.1214/19-SS123</a>
Alternative languages
Result language
angličtina
Original language name
Halfspace depth and floating body
Original language description
Little known relations of the renown concept of the halfspace depth for multivariate data with notions from convex and affine geometry are discussed. Maximum halfspace depth may be regarded as a measure of symmetry for random vectors. As such, the maximum depth stands as a generalization of a measure of symmetry for convex sets, well studied in geometry. Under a mild assumption, the upper level sets of the halfspace depth coincide with the convex floating bodies of measures used in the definition of the affine surface area for convex bodies in Euclidean spaces. These connections enable us to partially resolve some persistent open problems regarding theoretical properties of the depth.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometric aspects of mathematical statistics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Statistics Surveys
ISSN
1935-7516
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
67
Pages from-to
52-118
UT code for WoS article
000484841700001
EID of the result in the Scopus database
2-s2.0-85068675362