All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Halfspace depth and floating body

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401840" target="_blank" >RIV/00216208:11320/19:10401840 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zq02fiNRPO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zq02fiNRPO</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1214/19-SS123" target="_blank" >10.1214/19-SS123</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Halfspace depth and floating body

  • Original language description

    Little known relations of the renown concept of the halfspace depth for multivariate data with notions from convex and affine geometry are discussed. Maximum halfspace depth may be regarded as a measure of symmetry for random vectors. As such, the maximum depth stands as a generalization of a measure of symmetry for convex sets, well studied in geometry. Under a mild assumption, the upper level sets of the halfspace depth coincide with the convex floating bodies of measures used in the definition of the affine surface area for convex bodies in Euclidean spaces. These connections enable us to partially resolve some persistent open problems regarding theoretical properties of the depth.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometric aspects of mathematical statistics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Statistics Surveys

  • ISSN

    1935-7516

  • e-ISSN

  • Volume of the periodical

    Neuveden

  • Issue of the periodical within the volume

    13

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    67

  • Pages from-to

    52-118

  • UT code for WoS article

    000484841700001

  • EID of the result in the Scopus database

    2-s2.0-85068675362