Big Ramsey degrees of 3-uniform hypergraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403060" target="_blank" >RIV/00216208:11320/19:10403060 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FbuCz7RUHL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FbuCz7RUHL</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Big Ramsey degrees of 3-uniform hypergraphs
Original language description
Given a countably infinite hypergraph R and affnite hypergraph A, the big Ramsey degree of A in R is the least number L such that, for every finite k and every k-colouring of the embeddings of A to R, there exists an embedding f from R to R such that all the embeddings of A to the image f(R) have at most L different colours. We describe the big Ramsey degrees of the random countably infinite 3-uniform hypergraph, thereby solving a question of Sauer. We also give a new presentation of the results of Devlin and Sauer on, respectively, big Ramsey degrees of the order of the rationals and the countably infinite random graph. Our techniques generalise (in a natural way) to relational structures and give new examples of Ramsey structures (a concept recently introduced by Zucker with applications to topological dynamics).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Universitatis Comenianae
ISSN
0862-9544
e-ISSN
—
Volume of the periodical
2019
Issue of the periodical within the volume
88
Country of publishing house
SK - SLOVAKIA
Number of pages
8
Pages from-to
415-422
UT code for WoS article
000484349000010
EID of the result in the Scopus database
2-s2.0-85073771525