Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403063" target="_blank" >RIV/00216208:11320/19:10403063 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-aGNgvm9XI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-aGNgvm9XI</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-018-0455-0" target="_blank" >10.1007/s00453-018-0455-0</a>
Alternative languages
Result language
angličtina
Original language name
Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs
Original language description
We consider the k-Center problem and some generalizations. For k-Center a set of kcenter vertices needs to be found in a graph G with edge lengths, such that the distance from any vertex ofG to its nearest center is minimized. This problem naturally occurs in transportation networks, and therefore we model the inputs as graphs with bounded highway dimension, as proposed by Abraham etal. (SODA, pp 782-793, 2010). We show both approximation and fixed-parameter hardness results, and how to overcome them using fixed-parameter approximations, where the two paradigms are combined. In particular, we prove that for any epsilon>0 computing a (2-epsilon)-approximation is W[2]-hard for parameterk, and NP-hard for graphs with highway dimension O(log2n). The latter does not rule out fixed-parameter (2-epsilon)-approximations for the highway dimension parameterh, but implies that such an algorithm must have at least doubly exponential running time in h if it exists, unless ETH fails. On the positive side, we show how to get below the approximation factor of2 by combining the parameters k andh: we develop a fixed-parameter 3/2-approximation with running time 2O(khlogh)<bold>nO</bold>(1). Additionally we prove that, unless P=NP, our techniques cannot be used to compute fixed-parameter (2-epsilon)-approximations for only the parameter h. We also provide similar fixed-parameter approximations for the weightedk-Center and (k,F)-Partition problems, which generalize k-Center.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algorithmica
ISSN
0178-4617
e-ISSN
—
Volume of the periodical
81
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
1031-1052
UT code for WoS article
000460105700005
EID of the result in the Scopus database
2-s2.0-85046896645