All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403063" target="_blank" >RIV/00216208:11320/19:10403063 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-aGNgvm9XI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-aGNgvm9XI</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00453-018-0455-0" target="_blank" >10.1007/s00453-018-0455-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs

  • Original language description

    We consider the k-Center problem and some generalizations. For k-Center a set of kcenter vertices needs to be found in a graph G with edge lengths, such that the distance from any vertex ofG to its nearest center is minimized. This problem naturally occurs in transportation networks, and therefore we model the inputs as graphs with bounded highway dimension, as proposed by Abraham etal. (SODA, pp 782-793, 2010). We show both approximation and fixed-parameter hardness results, and how to overcome them using fixed-parameter approximations, where the two paradigms are combined. In particular, we prove that for any epsilon&gt;0 computing a (2-epsilon)-approximation is W[2]-hard for parameterk, and NP-hard for graphs with highway dimension O(log2n). The latter does not rule out fixed-parameter (2-epsilon)-approximations for the highway dimension parameterh, but implies that such an algorithm must have at least doubly exponential running time in h if it exists, unless ETH fails. On the positive side, we show how to get below the approximation factor of2 by combining the parameters k andh: we develop a fixed-parameter 3/2-approximation with running time 2O(khlogh)&lt;bold&gt;nO&lt;/bold&gt;(1). Additionally we prove that, unless P=NP, our techniques cannot be used to compute fixed-parameter (2-epsilon)-approximations for only the parameter h. We also provide similar fixed-parameter approximations for the weightedk-Center and (k,F)-Partition problems, which generalize k-Center.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algorithmica

  • ISSN

    0178-4617

  • e-ISSN

  • Volume of the periodical

    81

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    1031-1052

  • UT code for WoS article

    000460105700005

  • EID of the result in the Scopus database

    2-s2.0-85046896645