On relaxed Šoltés's problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403434" target="_blank" >RIV/00216208:11320/19:10403434 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pk_e8RKnii" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pk_e8RKnii</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On relaxed Šoltés's problem
Original language description
TheWiener indexis a graph parameter originating from chemical graphtheory. It is de ned as the sum of the lengths of the shortest paths between all pairsof vertices in given graph. In 1991,Soltes posed the following problem regardingWiener index. Find all graphs such that its Wiener index is preserved upon removalof any vertex. The problem is far from being solved and to this day, only one suchgraph is known { the cycle graph on 11 vertices.In this paper we solve a relaxed version of the problem, proposed by Knor,Majstorovic andSkrekovski. The problem is to nd for a givenk(in nitely many)graphs such that they have exactlykvertices such that if we remove any one ofthem, the Wiener index stays the same. We call such verticesgoodvertices and weshow that there are in nitely many cactus graphs with exactlykcycles of length atleast 7 that contain exactly 2kgood vertices and in nitely many cactus graphs withexactlykcycles of lengthc2 f5;6gthat contain exactlykgood vertices. On theother hand, we prove thatGhas no good vertex if the length of the longest cycleinGis at most 4.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Universitatis Comenianae
ISSN
0862-9544
e-ISSN
—
Volume of the periodical
88
Issue of the periodical within the volume
3
Country of publishing house
SK - SLOVAKIA
Number of pages
6
Pages from-to
475-480
UT code for WoS article
000484349000019
EID of the result in the Scopus database
2-s2.0-85078507997