All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the m-eternal Domination Number of Cactus Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00333858" target="_blank" >RIV/68407700:21240/19:00333858 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-30806-3_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-30806-3_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-30806-3_4" target="_blank" >10.1007/978-3-030-30806-3_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the m-eternal Domination Number of Cactus Graphs

  • Original language description

    Given a graph $G$, guards are placed on vertices of $G$. Then vertices are subject to an infinite sequence of attacks so that each attack must be defended by a guard moving from a neighboring vertex. The m-eternal domination number is the minimum number of guards such that the graph can be defended indefinitely. In this paper we study the m-eternal domination number of cactus graphs, that is, connected graphs where each edge lies in at most two cycles, and we consider three variants of the m-eternal domination number: first variant allows multiple guards to occupy a single vertex, second variant does not allow it, and in the third variant additional ``eviction'' attacks must be defended. We provide a new upper bound for the m-eternal domination number of cactus graphs, and for a subclass of cactus graphs called Christmas cactus graphs, where each vertex lies in at most two cycles, we prove that these three numbers are equal. Moreover, we present a linear-time algorithm for computing them.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Reachability Problems

  • ISBN

    978-3-030-30805-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    33-47

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Brussels

  • Event date

    Sep 11, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article