All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Testing gravity with interstellar precursor missions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10406395" target="_blank" >RIV/00216208:11320/19:10406395 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U~TsUHmGsn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U~TsUHmGsn</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/mnras/stz1508" target="_blank" >10.1093/mnras/stz1508</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Testing gravity with interstellar precursor missions

  • Original language description

    We consider how the trajectory of an interstellar precursor mission would be affected by the gravity of the Sun in Newtonian and Milgromian dynamics (MOND). The solar gravity is approximate to 50 per cent stronger in MOND beyond a distance of approximate to 7000 astronomical units, the Sun&apos;s MOND radius. A spacecraft travelling at 0.01 of light speed reaches this distance after 11.1 years. We show that the extra gravity in MOND causes an anomalous deceleration that reduces its radial velocity by approximate to 3 cms(-1) and the two-way light travel time from the inner Solar System by approximate to 0.1 s after 20 years. A distinctive signature of MOND is that the gravity from the Sun is not directly towards it. This is due to the nonlinear nature of MOND and the external gravitational field from the rest of the Galaxy, which we self-consistently include in our calculations. As a result, the sky position of the spacecraft would deviate by up to 0.2 mas over 20 years. This deviation is always in the plane containing the spacecraft trajectory and the direction towards the Galactic centre. By launching spacecraft in different directions, it is possible to test the characteristic pattern of angular deviations expected in MOND. This would minimize the chance that any detected anomalies are caused by other processes like drag from the interstellar medium. Such confounding factors could also be mitigated using an onboard accelerometer to measure non-gravitational forces. We briefly discuss how the gravity theories could be conclusively distinguished using a Cavendish-style active gravitational experiment beyond the Sun&apos;s MOND radius.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monthly Notices of the Royal Astronomical Society

  • ISSN

    0035-8711

  • e-ISSN

  • Volume of the periodical

    487

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    2665-2672

  • UT code for WoS article

    000474919700082

  • EID of the result in the Scopus database

    2-s2.0-85071188257