All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Acoustic emission analysis of the compressive deformation of iron foams and their biocompatibility study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10406653" target="_blank" >RIV/00216208:11320/19:10406653 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U3pbZSJbdP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U3pbZSJbdP</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.msec.2018.12.035" target="_blank" >10.1016/j.msec.2018.12.035</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Acoustic emission analysis of the compressive deformation of iron foams and their biocompatibility study

  • Original language description

    We synthesized Fe foams using water suspensions of micrometric Fe2O3 powder by reducing and sintering the sublimated Fe oxide green body to Fe under 5% H-2/Ar gas. The resultant Fe foam showed aligned lamellar macropores replicating the ice dendrites. The compressive behavior and deformation mechanism of the synthesized Fe foam were studied using an acoustic emission (AE) method, with which we detected sudden localized structural changes in the Fe foam material. The evolution of the deformation mechanism was elucidated using the adaptive sequential k-means (ASK) algorithm; specifically, the plastic deformation of the cell struts was followed by localized cell collapse, which eventually led to fracturing of the cell walls. For potential biomedical applications, the corrosion and biocompatibility characteristics of the two synthesized Fe foams with different porosities (50% vs. 44%) were examined and compared. Despite its larger porosity, the superior corrosion behavior of the Fe foam with 50% porosity can be attributed to its larger pore size and smaller microscopic surface area. Based on the cytotoxicity tests for the extracts of the foams, the Fe foam with 44% porosity showed better cytocompatibility than that with 50% porosity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/GA15-10821S" target="_blank" >GA15-10821S: Size effect in plastic deformation of materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials Science &amp; Engineering C

  • ISSN

    0928-4931

  • e-ISSN

  • Volume of the periodical

    97

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    367-376

  • UT code for WoS article

    000457952800035

  • EID of the result in the Scopus database

    2-s2.0-85058702293