Three-dimensional flows of pore pressure-activated Bingham fluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10407797" target="_blank" >RIV/00216208:11320/19:10407797 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HO1t_.IFz6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HO1t_.IFz6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202519500416" target="_blank" >10.1142/S0218202519500416</a>
Alternative languages
Result language
angličtina
Original language name
Three-dimensional flows of pore pressure-activated Bingham fluids
Original language description
We are concerned with a system of partial differential equations (PDEs) describing internal flows of homogeneous incompressible fluids of Bingham type in which the value of activation (the so-called yield) stress depends on the internal pore pressure governed by an advection-diffusion equation. After providing the physical background of the considered model, paying attention to the assumptions involved in its derivation, we focus on the PDE analysis of the initial and boundary value problems. We give several equivalent descriptions for the considered class of fluids of Bingham type. In particular, we exploit the possibility to write such a response as an implicit tensorial constitutive equation, involving the pore pressure, the deviatoric part of the Cauchy stress and the velocity gradient. Interestingly, this tensorial response can be characterized by two scalar constraints. We employ a similar approach to treat stick-slip boundary conditions. Within such a setting we prove long-time and large-data existence of weak solutions to the evolutionary problem in three dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamical and mathematical analysis of flows of complex fluids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
11
Country of publishing house
SG - SINGAPORE
Number of pages
37
Pages from-to
2089-2125
UT code for WoS article
000492774000004
EID of the result in the Scopus database
2-s2.0-85072573572