All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Defective Colouring of Graphs Excluding A Subgraph or Minor

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10422239" target="_blank" >RIV/00216208:11320/19:10422239 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1Zi2BVrW7b" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1Zi2BVrW7b</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00493-018-3733-1" target="_blank" >10.1007/s00493-018-3733-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Defective Colouring of Graphs Excluding A Subgraph or Minor

  • Original language description

    Archdeacon (1987) proved that graphs embeddable on a fixed surface can be 3-coloured so that each colour class induces a subgraph of bounded maximum degree. Edwards, Kang, Kim, Oum and Seymour (2015) proved that graphs with no Kt+1-minor can be t-coloured so that each colour class induces a subgraph of bounded maximum degree. We prove a common generalisation of these theorems with a weaker assumption about excluded subgraphs. This result leads to new defective colouring results for several graph classes, including graphs with linear crossing number, graphs with given thickness (with relevance to the earth-moon problem), graphs with given stack- or queue-number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdiere parameter, and graphs excluding a complete bipartite graph as a topological minor.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LL1201" target="_blank" >LL1201: Complex Structures: Regularities in Combinatorics and Discrete Mathematics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Combinatorica

  • ISSN

    0209-9683

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    34

  • Pages from-to

    377-410

  • UT code for WoS article

    000471679900007

  • EID of the result in the Scopus database

    2-s2.0-85051715901