Odd Chromatic Number of Graph Classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00370168" target="_blank" >RIV/68407700:21240/23:00370168 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-43380-1_4" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43380-1_4" target="_blank" >10.1007/978-3-031-43380-1_4</a>
Alternative languages
Result language
angličtina
Original language name
Odd Chromatic Number of Graph Classes
Original language description
A graph is called odd (respectively, even) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an odd colouring of G. Scott [Graphs and Combinatorics, 2001] proved that a graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph G is k-odd colourable if it can be partitioned into at most k odd induced subgraphs. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. In particular, we consider for a number of classes whether they have bounded odd chromatic number. Our main results are that interval graphs, graphs of bounded modular-width and graphs of bounded maximum degree all have bounded odd chromatic number.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science
ISBN
978-3-031-43379-5
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
15
Pages from-to
44-58
Publisher name
Springer
Place of publication
Cham
Event location
Fribourg
Event date
Jun 28, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001162209000004