All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Odd Chromatic Number of Graph Classes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00370168" target="_blank" >RIV/68407700:21240/23:00370168 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-43380-1_4" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-43380-1_4" target="_blank" >10.1007/978-3-031-43380-1_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Odd Chromatic Number of Graph Classes

  • Original language description

    A graph is called odd (respectively, even) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an odd colouring of G. Scott [Graphs and Combinatorics, 2001] proved that a graph admits an odd colouring if and only if it has an even number of vertices. We say that a graph G is k-odd colourable if it can be partitioned into at most k odd induced subgraphs. We initiate the systematic study of odd colouring and odd chromatic number of graph classes. In particular, we consider for a number of classes whether they have bounded odd chromatic number. Our main results are that interval graphs, graphs of bounded modular-width and graphs of bounded maximum degree all have bounded odd chromatic number.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science

  • ISBN

    978-3-031-43379-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    44-58

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Fribourg

  • Event date

    Jun 28, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001162209000004