Table understanding in structured documents
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10473073" target="_blank" >RIV/00216208:11320/19:10473073 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ICDARW.2019.40098" target="_blank" >https://doi.org/10.1109/ICDARW.2019.40098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDARW.2019.40098" target="_blank" >10.1109/ICDARW.2019.40098</a>
Alternative languages
Result language
angličtina
Original language name
Table understanding in structured documents
Original language description
Table detection and extraction has been studied in the context of documents like reports, where tables are clearly outlined and stand out from the document structure visually. We study this topic in a rather more challenging domain of layout-heavy business documents, particularly invoices. Invoices present the novel challenges of tables being often without outlines - either in the form of borders or surrounding text flow - with ragged columns and widely varying data content. We will also show, that we can extract specific information from structurally different tables or table-like structures with one model. We present a comprehensive representation of a page using graph over word boxes, positional embeddings, trainable textual features and rephrase the table detection as a text box labeling problem. We will work on our newly presented dataset of pro forma invoices, invoices and debit note documents using this representation and propose multiple baselines to solve this labeling problem. We then propose a novel neural network model that achieves strong, practical results on the presented dataset and analyze the model performance and effects of graph convolutions and self-attention in detail.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2019 INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION WORKSHOPS (ICDARW), VOL 5
ISBN
978-1-72815-054-3
ISSN
1520-5363
e-ISSN
—
Number of pages
7
Pages from-to
158-164
Publisher name
IEEE
Place of publication
NEW YORK
Event location
Sydney
Event date
Sep 19, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000518786800027