Page Layout Analysis System for Unconstrained Historic Documents
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU142905" target="_blank" >RIV/00216305:26230/21:PU142905 - isvavai.cz</a>
Result on the web
<a href="https://www.fit.vut.cz/research/publication/12493/" target="_blank" >https://www.fit.vut.cz/research/publication/12493/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-86331-9_32" target="_blank" >10.1007/978-3-030-86331-9_32</a>
Alternative languages
Result language
angličtina
Original language name
Page Layout Analysis System for Unconstrained Historic Documents
Original language description
Extraction of text regions and individual text lines from historic documents is necessary for automatic transcription. We propose extending a CNN-based text baseline detection system by adding line height and text block boundary predictions to the model output, allowing the system to extract more comprehensive layout information. We also show that pixel-wise text orientation prediction can be used for processing documents with multiple text orientations. We demonstrate that the proposed method performs well on the cBAD baseline detection dataset. Additionally, we benchmark the method on newly introduced PERO layout dataset which we also make public.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/DG18P02OVV055" target="_blank" >DG18P02OVV055: Advanced content extraction and recognition for printed and handwritten documents for better accessibility and usability</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021
ISBN
978-3-030-86330-2
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
492-506
Publisher name
Springer Nature Switzerland AG
Place of publication
Lausanne
Event location
Lausanne, Switzerland
Event date
Sep 5, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000770800600032