All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DocILE Benchmark for Document Information Localization and Extraction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371807" target="_blank" >RIV/68407700:21230/23:00371807 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-41679-8_9" target="_blank" >https://doi.org/10.1007/978-3-031-41679-8_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-41679-8_9" target="_blank" >10.1007/978-3-031-41679-8_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DocILE Benchmark for Document Information Localization and Extraction

  • Original language description

    This paper introduces the DocILE benchmark with the largest dataset of business documents for the tasks of Key Information Localization and Extraction and Line Item Recognition. It contains 6.7k annotated business documents, 100k synthetically generated documents, and nearly 1M unlabeled documents for unsupervised pre-training. The dataset has been built with knowledge of domain- and task-specific aspects, resulting in the following key features: (i) annotations in 55 classes, which surpasses the granularity of previously published key information extraction datasets by a large margin; (ii) Line Item Recognition represents a highly practical information extraction task, where key information has to be assigned to items in a table; (iii) documents come from numerous layouts and the test set includes zero- and few-shot cases as well as layouts commonly seen in the training set. The benchmark comes with several baselines, including RoBERTa, LayoutLMv3 and DETR-based Table Transformer; applied to both tasks of the DocILE benchmark, with results shared in this paper, offering a quick starting point for future work. The dataset, baselines and supplementary material are available at https://github.com/rossumai/docile.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICDAR 2023: Proceedings of the Document Analysis and Recognition, Part II

  • ISBN

    978-3-031-41678-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    20

  • Pages from-to

    147-166

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    San José

  • Event date

    Aug 21, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article