All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Indecomposable integers in real quadratic fields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10414274" target="_blank" >RIV/00216208:11320/20:10414274 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nXIJdz3_fp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nXIJdz3_fp</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jnt.2019.11.005" target="_blank" >10.1016/j.jnt.2019.11.005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Indecomposable integers in real quadratic fields

  • Original language description

    In 2016, Jang and Kim stated a conjecture about the norms of indecomposable integers in real quadratic number fields Q (root D) where D &gt; 1 is a squarefree integer. Their conjecture was later disproved by Kala for D 2 mod 4. We investigate such indecomposable integers in greater detail. In particular, we find the minimal D in each congruence class D 1, 2,3 mod 4 that provides a counterexample to the Jang-Kim Conjecture; provide infinite families of such counterexamples; and state a refined version of the Jang-Kim Conjecture. Lastly, we prove a slightly weaker version of our refined conjecture that is of the correct order of magnitude, showing the Jang-Kim Conjecture is only wrong by at most O (root D). (C) 2019 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Number Theory

  • ISSN

    0022-314X

  • e-ISSN

  • Volume of the periodical

    212

  • Issue of the periodical within the volume

    July 2020

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    458-482

  • UT code for WoS article

    000523512000021

  • EID of the result in the Scopus database

    2-s2.0-85077147715