Norms of indecomposable integers in real quadratic fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330676" target="_blank" >RIV/00216208:11320/16:10330676 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jnt.2016.02.022" target="_blank" >http://dx.doi.org/10.1016/j.jnt.2016.02.022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnt.2016.02.022" target="_blank" >10.1016/j.jnt.2016.02.022</a>
Alternative languages
Result language
angličtina
Original language name
Norms of indecomposable integers in real quadratic fields
Original language description
We study totally positive, additively indecomposable integers in a real quadratic field Q(D MINUS SIGN MINUS SIGN SQUARE ROOT ) . We estimate the size of the norm of an indecomposable integer by expressing it as a power series in u MINUS SIGN 1 i , where D MINUS SIGN MINUS SIGN SQUARE ROOT has the periodic continued fraction expansion [u 0 ,u 1 ,u 2 ,...,u sMINUS SIGN 1 ,2u 0 ,u 1 ,u 2 ,...] . This enables us to disprove a conjecture of Jang-Kim [JK] concerning the maximal size of the norm of an indecomposable integer.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Number Theory
ISSN
0022-314X
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
166
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
193-207
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84962374047