All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the discriminator of Lucas sequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA20023P3" target="_blank" >RIV/61988987:17310/19:A20023P3 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs40316-017-0097-7" target="_blank" >https://link.springer.com/article/10.1007%2Fs40316-017-0097-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40316-017-0097-7" target="_blank" >10.1007/s40316-017-0097-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the discriminator of Lucas sequences

  • Original language description

    We consider the family of Lucas sequences uniquely determined by Un+2(k) = (4k + 2)Un+1(k) - U-n(k), with initial values U-0(k) = 0 and U-1(k) = 1 and k >= 1 an arbitrary integer. For any integer n >= 1 the discriminator function D-k(n) of U-n(k) is defined as the smallest integer m such that U-0(k), U-1(k), ... ,Un-1(k) are pairwise incongruent modulo m. Numerical work of Shallit on D-k(n) suggests that it has a relatively simple characterization. In this paper we will prove that this is indeed the case by showing that for every k >= 1 there is a constant n(k) such that D-k(n) has a simple characterization for every n >= nk. The case k = 1 turns out to be fundamentally different from the case k > 1.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ANNALES MATHEMATIQUES DU QUEBEC

  • ISSN

    2195-4755

  • e-ISSN

  • Volume of the periodical

    43

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    21

  • Pages from-to

    51-71

  • UT code for WoS article

    000462135400003

  • EID of the result in the Scopus database

    2-s2.0-85041892001