All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the sum of squares of consecutive k-bonacci numbers which are l-bonacci numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50015448" target="_blank" >RIV/62690094:18470/19:50015448 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/colloquium-mathematicum/all/156/1/112828/on-the-sum-of-squares-of-consecutive-k-bonacci-numbers-which-are-l-bonacci-numbers" target="_blank" >https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/colloquium-mathematicum/all/156/1/112828/on-the-sum-of-squares-of-consecutive-k-bonacci-numbers-which-are-l-bonacci-numbers</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/cm7272-6-2018" target="_blank" >10.4064/cm7272-6-2018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the sum of squares of consecutive k-bonacci numbers which are l-bonacci numbers

  • Original language description

    Let (F-n)(n &gt;= 0) be the Fibonacci sequence given by Fm+2 = Fm+1 + F-m, for m &gt;= 0, where F-0 = 0 and F-1 = 1. A well-known generalization of the Fibonacci sequence is the k-generalized Fibonacci sequence (F-n((k)))(n) which is defined by the initial values 0, 0, ..., 0, 1 (k terms) and each term afterwards is the sum of the k preceding terms. In 2014, Chaves and Marques solved the Diophantine equation (F-n((k)))(2) + (F-n+1((k)))(2) = F-m((k)) in integers m, n and k &gt;= 2. In this paper, we generalize this result by proving that the Diophantine equation (F-n((k)))(2) + (F-n+1((k)))(2) = F-m((l)) has no solution in positive integers n, m, k, l with 2 &lt;= k &lt; l and n &gt; 1.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Colloquium Mathematicum

  • ISSN

    0010-1354

  • e-ISSN

  • Volume of the periodical

    156

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    12

  • Pages from-to

    153-164

  • UT code for WoS article

    000458512700009

  • EID of the result in the Scopus database

    2-s2.0-85062401999